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A classical transport enhancement problem is concerned with increasing the heat 
transfer in a system while minimizing penalties associated with shear stress, pressure 
drop, and viscous dissipation. It is shown by Reynolds’ analogy that viscous 
dissipation in a wide class of flows scales linearly with the Nusselt number and 
quadratically with the Reynolds number. It thus follows that transport enhancement 
optimization is equivalent to a problem in hydrodynamic stability theory ; a more 
unstable flow will achieve the same Nusselt number a t  a lower Reynolds number, and 
therefore a t  a fraction of the dissipative cost. This transport-stability theory is 
illustrated in a numerical study of supercritical (unsteady) two-dimensional flow in 
an eddy-promoter channel comprising a plane channel with an infinite periodic array 
of cylindrical obstructions. 

It is shown that the addition of small cylinders to a plane channel results in 
stability modes that are little changed in form or frequency from plane-channel 
Tollmien-Schlichting waves. However, eddy-promoter flows are dramatically less 
stable than their plane-channel counterparts owing to cylinder-induced shear-layer 
instability (with critical Reynolds numbers on the order of hundreds rather than 
thousands), and thus these flows yield heat transfer rates commensurate with those 
of a plane-channel turbulent flow but a t  much lower Reynolds number. Small- 
cylinder supercritical eddy-promoter flows are shown to roughly preserve the 
convective-diffusive Reynolds analogy, and it thus follows from the transport- 
stability theory that eddy-promoter flows achieve the same heat transfer rates as 
plane-channel turbulent flows while incurring significantly less dissipation. 

1. Introduction 
An essential step in a large number of industrial processes is the removal of heat 

from a wall to a flowing fluid stream. In many of these engineering applications it is 
heat exchange mechanisms that limit the performance of the overall system, and 
thus considerable effort has been devoted to increasing heat transfer rates by 
effecting transport enhancement devices or techniques (Bergles & Webb 1985). 
Transport-enhancement schemes can take a variety of forms, from the ‘passive ’ 
addition of flow obstacles, to the ‘active’ modulation of the driving flow rate. 

Although it is clear that) large transfer coefficients can be obtained by (say) 
flow-obstacle-induced mixing, it is important to consider not only the desired 
increase in heat transfer due to this flow modification, but also the undesired increase 

t To whom all correspondence should be addressed at Rm. 3-264, M.I.T., 77 Mass. Ave., 
Cambridge, MA 02139, USA. 
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in momentum transport as measured by shear stress, pressure drop, and viscous 
dissipation. The latter are directly reflected in tangibles such as structural integrity 
and pumping power, and thus must be factored into any rational approach to the 
transport enhancement problem. Although it is certainly well recognized that the 
central issue in convective transport is ' thermal-hydraulic ' balance, there do not 
appear to be a t  present any general guidelines allowing for a priori evaluation of the 
hydraulic viability of a particular transport augmentation scheme. 

A common form of transport, enhancement is flow obstruction by cylindrical eddy 
promoters placed in a regular periodic fashion in a channel or pipe. An analysis of 
such a system for mass transfer in a channel is given by Isaacson & Sonin (1976), in 
which minimization of a dissipation cost function is carried out subject to an 
experimentally determined friction factor-Sherwood number relationship. The 
results of this study implicate low-Reynolds-number configurations as producing 
minimum dissipation for a given mass transfer rate. 

This study of mass transfer in an eddy-promoter channel system raises the general 
question of the relative merit of high-flow-rate turbulent transport as compared to 
low-Reynolds-number unsteady or transitional transport. Even more generally, it  is 
of interest to determine if simple hydrodynamic arguments can be put forth that 
isolate the critical phenomena or parameters that  determine the relationship 
between ' desirable ' heat or mass transfer and ' unwanted ' viscous dissipation. In  this 
paper we show that to a first, admittedly rough, approximation, a general statement 
relating transport and dissipation can be made. 

Our point of departure, not surprisingly, is the classical Reynolds analogy, which 
relates momentum transfer and heat transfer in flows dominated by a con- 
vective-diffusive balance (Reynolds 1874). The Reynolds analogy is, somewhat 
anomalously, exact for the case of the laminar flat-plate boundary layer a t  unity 
Prandtl number (Schlichting 1968) ; however, attempts to find other non-trivial 
instances in which the analogy is rigorous have failed (Magen, Mikic & Patera 1988). 
Nevertheless, in flows in which direct pressure effects are small, in which a strong 
convective4iffusive balance prevails, and in which the gradients in velocity and 
temperature appear in similar ways in their respective equations, the Reynolds 
analogy does appear to  be valid. 

Taking the Reynolds analogy as given, it then follows from simple momentum and 
energy integrals that shear stress, pressure drop, and viscous dissipation are all 
reduced if a lower-Reynolds-number flow can be found that achieves the same heat 
transfer rate as a higher-Reynolds-number flow. This, in turn, implies that the 
problem of design of optimal heat-transfer enhancement systems is best considered 
as a problem in hydrodynamic stability theory; a more unstable flow (that is, a flow 
with a lower critical Reynolds number) will generate larger Reynolds fluxes a t  lower 
Reynolds numbers, and thus achieve commensurate heat transfer a t  a fraction of the 
dissipative penalty. 

In  this paper we demonstrate the validity of this dissipation-transport stability 
theory for the problem of unsteady moderate Reynolds number two-dimensional 
flow in a channel disrupted by a periodic array of cylindrical eddy promotors. I n  $2 
the governing equations are presented, and the spectral-element numerical methods 
used to solve the Navier-Stokes and energy equations are briefly described. In $3  the 
heat-transfer enhancement problem is posed, and the Reynolds analogy is evoked to 
reduce the optimization study to an equivalent problem in hydrodynamic stability 
theory. In $4, the stability of eddy-promoter channel flows is described, and related 
to the classical theory for plane Poiseuille flow. Lastly, in $5, results are presented 
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for dissipation and transport in eddy-promoter systems. Reynolds’ analogy is shown 
to hold in the laminar unsteady flows studied, and the stability-transport arguments 
and associated implications are demonstrated to be valid. 

The main thrust of the current paper is the study of the oft-quoted but rarely 
quantified relationship between transport enhancement and flow stability. Thus, our 
treatment of the stability of eddy-promotor flows is primarily limited to those 
concepts directly related to transport and dissipation. A future paper (G. E. 
Karniadakis, H. Kozlu, & A. T. Patera, in preparation) will describe the stability of 
eddy-promoter flows in greater depth. 

2. Governing equations 
2.1. The nonlinear problem 

The geometry to be considered is the periodic eddy-promoter channel shown in figure 
1,  consisting of a planar channel disrupted by a regular periodic array of cylindrical 
obstacles. The channel is infinite in extent in the streamwise (x) and spanwise (2) 
directions, and the flow is therefore assumed to be fully developed in x and 
independent of z. The thermal boundary conditions are taken to be that of uniform 
flux on the bottom wall, aD,, with an adiabatic top surface, aD,, and adiabatic 
cylinder surfaces, aD,. Natural convection, variation of thermal properties, and non- 
fully developed effects are all assumed t’o be negligible. The problem statement that 
follows is similar to that of our previous studies on periodically grooved channels 
(Ghaddar et al. 1986b, c) .  

To put the problem in non-dimensional form we scale all velocities by gV, where 
B is the cross-channel average velocity 

v = 12h1-l u1x, y, t )  dy, 

and u is the streamwise (x) velocity. Length is non-dimensionalized by the channel 
half-width h,  and temperature by q”h/k, where q“ is the uniform flux imposed a t  the 
bottom wall, aD,, and k is the thermal conductivity of the fluid. (Hereinafter all 
variables are assumed to be non-dimensional unless otherwise indicated.) This gives 
the following equations for the velocity, u(x, t )  ( =  ua+vf),  and the temperature, 
T ( x ,  t )  : 

ut = u x o - V I 7 +  R-lV2u in D, 

V . u = O  in D, (1 6 )  

and T,+V.(uT) = (RPr)-’V2T in D ,  (2) 

respectively, where the domain D is defined by the channel half-width h, the 
periodicity length between cylinders L, the diameter of the cylinders d, and the 
vertical cylinder placement 6.  Here ZZ is the total pressure, I7 = p+$luI2; o is the 
vorticity, o = V x v ;  R = gVh/v is the Reynolds number ; and Pr = v/a is the Prandtl 
number. Also, v and a are the kinematic viscosity and thermal diffusivity, 
respectively, and v = p/p ,  where p is the dynamic viscosity and p is the density. 

The fully developed boundary conditions for the velocity u(x ,  t )  are 

u(x,t) = 0, on aD, ( 3 a )  

( 3 6 )  v(x + mL,  y, t )  = ~ ( 2 ,  Y, t ) ,  
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FIGURE 1. The geometry of the periodic eddy-promoter channel is described by the distance 
between the eddy-promoter cylinders, L, the diameter of the eddy promoters, d ,  and the distance of 
the eddy promoters from the bottom waII, b. The geometry is assumed infinite in the streamwise 
(z) and spanwise (2) directions. 

where m is an integer periodicity index. For the pressure we require 

n ( x ,  t )  = - f ( t )  x+fi(x,  t ) ,  

f i ( z  + mL, y, t )  = fi(x, y, t ) ,  

where j ( t )  is the driving force for the flow, and is determined indirectly by the 
imposed flow-rate condition 

Q = 11: u(x, y, t )  dy = $. ( 5 )  

For the temperature boundary conditions on the channel and cylinder walls we 
have 

VT.i i  = 1 on8DB, ( 6 a )  

VT.ii = 0 onaD, U aD,, ( 6 b )  

respectively, where ii refers to the outward normal on the domain boundary. As 
discussed in previous work on periodic-groove flows (Patankar, Liu & Sparrow 1977 ; 
Ghaddar et al. 1 9 8 6 ~ ;  Ghaddar, Karniadakis & Patera 1986a), the correct fully 
developed periodic boundary condition on T ( x ,  t )  is 

:X 
T ( x ,  t )  = fqx ,  t )  +- 

RPr ’ 

O(z + mL, y, t )  = y, t ) ,  (7b) 

where the linear-in-x temperature term must be included to balance the heat input 
a t  the bottom channel wall (6a ) .  

It should be noted that, although we shall ultimately be interested in the 
relationship between viscous dissipation and heat transport. all coupling between the 
fluid and heat t)ransfer equations is via the convective terms in (2). In  particular, the 
temperature is passive, and does not drive the fluid flow, and the viscous dissipation 
does not enter as a source in the energy equation. 
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2.2. The linear stability problem 
In addition to the full nonlinear problem described by (1) and (3)-(5) it will also be 
of interest to consider the linearized problem about a steady solution to the 
Navier-Stokes equations, v , (x) ,  in which we assume solutions of the form 

v ( x ,  t )  = v,(x)  + € V ‘ ( X ,  t ) ,  € 4 1.  (8) 

(9a) 

v-v’ = 0. (9b) 

Inserting (8) into (1) and neglecting terms O(e2)  and higher gives the following linear 
equation for v’ (x ,  t) : 

U: = x o’+ U’ x o , -VII ’+  R-lV2d 

The boundary conditions on the perturbations v’, 17’ are as in (3)-(4), but the flow- 
rate condition ( 5 )  is now replaced with 

Q’ = ~ ~ ~ u ’ ( x ,  y, t)  dy = 0, 

corresponding to no net perturbation flow. 
For sufficiently large times, the solution of the initial-value problem (9)-( 10) will 

approach the least stable mode of the eigenvalue problem resulting from normal- 
mode formulation of the same equation. In  particular, the initial-value-problem 
result can be interpreted as 

d ( x ,  t)  - exp (d) Re{it’(x) exp (27ciQt)) (t -+a), (11)  

from which the growth rate g, and frequency 52, of the most unstable mode can be 
deduced. It should be noted that the time-asymptotic behaviour of (9)-(10) can be 
used to infer information about only the least-stable mode of the system. 

2.3. Numerical methods 

The direct numerical simulation approach followed in this investigation is very 
similar to that used in our grooved-channel studies (Ghaddar et al. 1986b, c ) ,  and we 
therefore only briefly summarize our methods. The basic philosophy is to use initial- 
value-problem solvers in all aspects of the work; steady states, their linear stability, 
and subsequent nonlinear oscillations and transport are all determined using 
essentially the same initial-value code, with only the interpretation of the results 
depending on the particular physical phenomenon of interest. The governing partial 
differential equations (1)-(7) are solved using finite differences in time and the 
isoparametric spectral-element method in space. The spectral-element method 
(Patera 1984; Korczak & Patera 1986; Ghaddar et al. 1986~) is a high-order 
weighted-residual technique that combines the geometric flexibility of finite-element 
schemes (Girault & Raviart 1986) with the rapid convergence rate, good resolution 
properties, and minimal dispersion of global spectral methods (Gottlieb & Orszag 
1977). 

I n  the spectral-element discretization the computational domain is broken up into 
macro-spectral elements, and the dependent and independent variables are 
approximated by Nth-order tensor-product polynomial expansions within the 
individual subdomains. Variational projection operators and Gauss numerical 
quadrature are used to  generate the discrete equations, which are then solved by 
direct or iterative procedures using tensor-product sum-factorization techniques. 
Convergence to the exact solution is achieved by increasing the degree N of the 
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x = 6.666 x = o  

FIQURE 2. Spectral-element mesh for the base-geometry eddy-promoter geometry, L = 6.666, d = 
0.4, b = 0.5. Fine resolution is placed near the cylinder surface to ensure accurate representation 
of the thin boundary layers and wake structures expected to form near the eddy promoters. The 
cylinder is placed (arbitrarily) a t  x = 1.50. 

polynomial approximation, while keeping fixed the number and identity of the 
underlying spectral elements. Although results presented in this paper are based 
primarily on time-splitting Stokes solvers and Chebyshev interpolants in space, 
current work uses improved schemes based on non-splitting Stokes algorithms and 
Legendre interpolants in space (Rsnquist & Patera 1987 ; Maday & Patera 1988). 

A typical calculation of an eddy-promoter flow a t  a Reynolds number of R = 225 
is carried out on a mesh such as that shown in figure 2, with 1400 (global) nodes and 
a timestep of At = 0.005. To resolve one period of the unsteady flow requires 1000 
timesteps, and an execution time of roughly 2.5 min (per period) on a single-headed 
CRAY X-MP. All numerical calculations presented in this paper have been 
determined to be sufficiently mesh- and timestep-independent to be considered 
accurate solutions of the unsteady Navier-Stokes and energy equations ; this is 
verified by comparison of solutions on different meshes, as well as by inspection of 
global momentum and energy balances. The code employed in the current, study has 
been used in many past investigations in which exhaustive comparisons with 
experiment and theory have been performed, one germane example of which is the 
accurate propagation of Tollmien-Schlichting waves shown in figure 4 of Ghaddar 
et aE. (1986 b) .  

Lastly, we note that the spectral-element results of this paper agree well with a set 
of companion experiments in water and wind tunnels (Kozlu, Mikic & Patera 1988; 
H. Kozlu, research in progress for a Ph.D. thesis at MIT), indicating that the 
assumptions implicit in the problem formulation (1)-(7) (e.g. two-dimensionality, 
periodicity) are, indeed, a reasonable approximation to physical reality for the 
parameter range studied. 

3. Dissipation-transport theory 
3.1. The transport enhancement problem 

The eddy-promoter channel system shown in figure 1 is representative of a wide class 
of engineering heat exchange problems. In  most of these applications the design 
requirement is that the temperature on the heated wall, aD,, remain below some 
prescribed level for a given imposed heat flux q”. In order to satisfy this maximum- 
wall-temperature requirement two approaches can be pursued : the Reynolds 
number of the flow can be increased while keeping the geometry fixed; or the eddy- 
promoter geometry can be modified while keeping the Reynolds number fixed. It is 
typically the case that with either one of these remedies the requisite increase in heat 
transfer coefficient can be obtained, and thus the distinction between the two choices 
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is determined solely by the optimality criteria used to evaluate the overall system 
performance. 

Although there is no single optimality criterion that encompasses all transport 
applications, it is generally true that a design that reduces shear stress, pressure 
drop, and viscous dissipation will be a good, if not optimal, transport enhancement 
procedure. Shear stress and pressure drop relate to structural integrity, whereas 
viscous dissipation translates directly into energy consumption. We shall therefore 
define the ' enhancement problem ' as follows : Find the optimal flow rate V and eddy- 
promoter configuration L, d ,  and b so as to minimize shear stress, pressure drop, and 
viscous dissipation for a given heat transfer rate per unit wall-temperature elevation. 

In order to pose this problem more quantitatively we introduce non-dimensional 
measures of heat transfer, shear stress, pressure drop, and dissipation. The heat 
transfer is characterized by a Nusselt number, 

I rL  

I J o  

where 0, is a reference temperature taken to be the (periodic part of the) mixed-mean 
temperature a t  x = 0, 

and angle brackets indicate a time average. The Nusselt number can be thought of 
as a non-dimensional heat transfer coefficient, as a flux per unit temperature 
elevation, or as an inverse average wall temperature. It should be noted that all 
quantities required in ( 12) are readily determined experimentally. 

For shear stress, pressure drop, and viscous dissipation we use the following non- 
dimensional parameters : 

T = t (7,) h2/pv2, 

and 

respectively, where all quantities on the right-hand side of (13) are dimensional : T, 

is the spatially averaged shear stress over aD, u aD,, and dpldx is the dimensional 
form of the constant-pressure-gradient term f ( t )  in (4). Note that the control 
variables of the problem, V ,  L, d ,  and b, do not enter explicitly into the non- 
dimensionalizations of shear stress, pressure drop, and dissipation, and thus minima 
of the non-dimensional parameters T ,  IT, and @ will reflect true minima of the 
corresponding dimensional quantities of interest, T,, (dpldx), and (dpldx) Vh,  
respectively. 

Armed with the definitions given above, we can write the transport-enhancement 
problem as 

min Z(T, 7c, @) for fixed { N u ;  h ; p ,  v, Pr,  k}, (14) 
R , L , d , b  

where Z( * , * , * ) is some cost function which is a monotonically decreasing function 
of all three arguments. Note that by fixing h in (14) we are essentially fixing the scale 
of the apparatus ; extension of the analysis to include optimization with respect to 
channel size is given in Kozlu et al. (1988). In  the current paper we shall not consider 
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the minimization of any particular %(T,  n, @), but will rather focus on understanding 
the fundamental unsteady hydrodynamic phenomena that relate 7 ,  n, @, and N u  in 
complex geometry flows. 

Before proceeding we shall make a point concerning the practical relevance of (14). 
The total (non-dimensional) temperature rise along the heated wall, 6T, is actually 
composed of two parts (see (7 b ) ) ,  6T = 6Tq + 1/Nu. Here 6Tq is the ‘thermodynamic ’ 
temperature rise due to the flux input qr’, 6Tq = ix /RPr,  and 1/Nu is the ‘transport- 
limited’ temperature difference between the wall and local fluid temperature. It is 
clear that in the design of real cooling systems it is 6T, not Nusselt number, that 
should be constrained. Although the fixed-ST optimization problem can be solved 
(Kozlu et al. 1988), the basic fluid-dynamical arguments that result are the same as 
for the fixed-Nu case, and we therefore proceed with the simpler optimization (14). 
It should be also noted that in many (fixed h )  systems Nu&?, < 1, in which case the 
distinction between 1/Nu and 6T is no longer important. 

3.2. Reynolds’ momentum-heat transfer analogy 

The solution or understanding of (14) depends primarily on the ability to relate the 
transport of momentum with the transfer of heat. The idea that momentum and heat 
transport are related in a fundamental and simple way is very old, dating back to the 
seminal work of Osborne Reynolds (1874). Indeed, Reynolds’ analogy is at the heart 
of much current forced-convection heat-transfer research and practice (Kays & 
Crawford 1980). 

Roughly speaking, the analogy states that in any flow in which momentum and 
heat transport are dominated by a strong convective4iffusive balance, in which 
velocity and temperature boundary conditions are similar, and in which the ‘outer’ 
flow is well mixed so as to make the wall structures universal and geometry- 
independent, the shear stress (momentum flux) and heat flux a t  the wall scale 
similarly. These criteria are typically met in turbulent flows, in which the Reynolds 
stress and Reynolds flux terms (velocity-velocity correlations and velocity- 
temperature correlations, respectively) are large compared with molecular diffusion 
through mean gradients. Although to date no rigorous theoretical work exists that 
proves the validity of the Reynolds analogy for general flows, certain upper-bound 
results have been obtained (Magen et al. 1988). 

As an example of how the Reynolds analogy is typically applied, we take the case 
of channel flow without eddy promoters (d = 0 in figure 1) .  For this flow, Reynolds’ 
analogy takes the form 

where all variables save y are dimensional, and ( A T )  represents the time-space 
average of the bottom-wall-to-bulk (mixed-mean) temperature difference. In  terms 
of our non-dimensional variables (12)-( 13), (15a) can be rewritten as 

T = $7 RNu. (15b) 

The parameter y in (15) is the ‘Reynolds-analogy constant ’, which, if the analogy 
applies, is a constant close to unity for Pr = 1 that is independent of Reynolds 
number R and flow geometry. More precisely, y should be a function only of Prandtl 
number . 

For turbulent channel and pipe flows a wealth of experimental observations (Kays 
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& Crawford 1980; H. Kozlu 1988, research in progress) support (15b) with y quite 
close to unity (i.e. to within several percent). Although the precise value of y will 
depend on the particular average velocity and temperature scales chosen (V and 
( A T ) ,  respectively, in (15)), in high-Reynolds-number turbulent flows the outer flow 
is well-mixed, and the value of y should be relatively insensitive to the choice of mean 
variables (Taylor 1930). 

For laminar channel flow the value of y in (15) can readily be shown to be 2.22 
independent of the Reynolds number. Although this value is not close to unity, this 
is not the real basis for rejecting the Reynolds analogy, as velocity and temperature 
scales could be chosen so as to achieve y = 1.  Rather, it  is the fact that y is strongly 
sensitive to the choice of mean scales that indicates that the analogy is not ‘valid ’ : 
there is no convective-diffusive balance in the purely diffusive laminar flow, and y 
reflects the detailed forcing functions and boundary conditions rather than universal 
wall structures. 

Somewhat anomalously, the one instance in which the Reynolds analogy is non- 
trivially exact is for a laminar flow, namely the flat-plate boundary layer a t  Prandtl 
number of unity (Schlichting 1968). The Reynolds-analogy convective-diffusive 
balance applies in this laminar flow owing to simple geometry and the absence of 
pressure terms. The fact that the analogy holds for the steady boundary layer as well 
as highly unsteady turbulent flows is, perhaps, not coincidental ; transport to  the wall 
in turbulent flows can be viewed a t  the instantaneous level as a series of boundary 
sublayer events, as described by surface-renewal models (Thomas 1979; Mikic 1981). 
The surface-renewal picture of wall structures allows the Prandtl-number dependence 
of y to be inferred as y - Pr-f (for Pr not small), which is in good agreement with 
experimental evidence (Kays & Crawford 1980). 

For the purpose of understanding transport enhancement in eddy-promoter 
channels we require several extensions to Reynolds’ analogy: its range of 
applicability must be extended to highly unsteady laminar flows as well as turbulent 
flows; the effects of ‘non-analogous’ components of momentum transport in a 
complex geometry flow must be quantified ; its implications as regards dissipation 
must be understood. We now turn to these issues. 

3.3. Relationship between dissipation, transport, and stability 
Our ultimate interest is in understanding transport in highly unsteady moderate- 
Reynolds-number laminar eddy-promoter flows, that  is, in eddy-promoter flows that 
are significantly supercritical as regards the linear stability limit. Although Reynolds’ 
analogy is typically applied only to turbulent flows, the general criteria for its 
validity (e.g. Reynolds-flux-dominated transport) would appear to apply equally 
well to  sufficiently supercritical laminar flows. I n  particular, the global statement 
(15) cannot distinguish between transport effected by low-wavenumber coherent 
secondary flows in ordered flows, and transport by random fluctuations and small- 
scale excitation in disordered flows. 

We therefore assume for now that the Reynolds analogy applies in the eddy- 
promoter geometry for all sufficiently supercritical Reynolds numbers (laminar or 
turbulent), and return to this point in $ 5  to provide numerical verification of the 
claim. We can thus write, as in (15), 

7 = RNu,  (16) 
where T is the non-dimensional average shear stress on all, U all,. We make two 
points concerning (16). First, (16) says nothing concerning momentum flux at the 
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cylinder surface, aD,, as r reflects only the shear stress a t  the two channel walls. 
Second, (16) implicitly assumes symmetry (in the average) for the shear stress on the 
two channel walls. It will be shown in $5  that the flow structures generated by the 
eddy-promoter cylinders are, indeed, roughly symmetric on the average. 

Having established (16), it  is a simple matter to apply an x-momentum balance to 
a periodicity interval control volume (x < x' < x+ L)  to arrive a t  

where C, is the drag coefficient on the cylinder, 

C, = F,/+pVE d. 

Here FD is the dimensional drag force on a single eddy promoter cylinder, and V, is 
the dimensional local velocity used to non-dimensionalize FD, taken to be V, = 

$V( 1 - ( 1  - b)2 ) .  A t  this point we do not conjecture as to the form of C,. 
Having obtained the pressure drop n, we can now calculate the total dissipation 

in the flow, which is simply the flow work term arising from the non-periodic part of 
the pressure, 

@ = h R 2 N u + @ , ,  (19a) 

The terms involving the drag on the cylinder in (17) and (19), nc and GC, 
respectively, represent ' non-analogous ' momentum transfer, in that as the eddy 
promoters are specified as adiabatic, the shear stress and pressure forces on the 
cylinder have no thermal analogue. (The pressure forces would, of course, have no 
thermal analogue independent of the thermal boundary conditions applied.) It is 
clear that (17)-( 19), and their associated implications discussed below, are generally 
valid for any flow involving the interaction of bluff bodies with an internal flow, and 
are not limited to our particular eddy-promoter system. 

We are now in a position to draw a general conclusion as to which flow systems 
result in optimal transport enhancement according to the criteria established in $3.1. 
We consider two flows, I and 11, which achieve a specified Nu a t  Reynolds numbers 
R, and R,, , respectively. Assuming for the moment that the non-analogous cylinder 
drag term Qc is small, the ratio of the dissipations in flows I and I1 is given by (19a) 
as 

It follows directly that if flow I is much more unstable than flow 11, that is, is able 
to achieve commensurate Reynolds fluxes and hence the same Nu at R, 4 R,,, then 
flow I will incur significantly less dissipation than flow 11. Similar arguments can be 
made on the basis of (16)-(17) to show that a more unstable flow also reduces 
pressure drop n, and shear stress 7. (By 'more unstable' in this context we mean a 
reduced critical Reynolds number for the primary bifurcation, although the concept 
of decreased stability and associated increased transport may extend to secondary 
instabilities and turbulent flow as well.) We note that the relationship (20) can also 
be interpreted as justification of the conventional heat-transfer-enhancement 
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wisdom, in which increases in the Nusselt number a t  fixed R are assumed to result 
in improvement in ‘system performance ’. 

The arguments given above reduce the problem of heat transfer enhancement to 
an equivalent problem in hydrodynamic stability theory: Find values of L,  d,  and b 
that maximally destabilize plane-channel flow. A critical assumption in (20), 
however, is that the cylinder drag term QC will be small compared with the 
‘analogous ’ components of the momentum transport. Indeed, i t  may appear 
paradoxical that the eddy-promoter cylinders could significantly decrease the critical 
Reynolds number of a channel flow, yet not contribute overly to the total drag 
and dissipation in the system. To understand why this is, in fact, the case, requires 
an investigation of the stability of eddy-promoter channel flows. 

4. Stability of eddy-promoter channel flows 
4.1. Plane-Poiseuil1e;flow Tollmien-Schlichting waves 

For the choice d = 0 (no cylinders), the general problem described in $52.1 and 2.2 
reduces to that of flat-channel plane Poiseuille flow. Although this ‘simple ’ problem 
may appear to be irrelevant to the problem of finite d ,  our results for grooved- 
channel flow indicate that this will not be the case (Ghaddar et al. 1986b). We 
therefore briefly review here the stability properties of plane Poiseuille flow (Drazin 
& Reid 1981). 

As is well known, a solution to the plane Poiseuille flow problem is the parabolic 
profile, v, = (1 - yz) 2. The linear stability of this flow with respect to infinitesimal 
disturbances of the form 

V&,(X, t )  = exp (aTS t )  Re(iXTs(y) exp (iax-2ziQTSt)} (21 a)  

(Tollmien-Schlichting waves of wavelength 27c/a), is governed by the classical 
Orr-Sommerfeld equation, the least-stable mode of which we shall denote 

F((TT~, ~ T S ,  eTs; CL, R) = 0. (21b) 

Depending on the parameter values, a and R, the least-stable mode can take the form 
of either a wall mode (low phase speed with critical layer near the wall) or a centre 
mode (high phase speed with critical layer near the centre of the channel) (Drazin & 
Reid 1981). 

Solution of (21 b )  (Orszag 1971) gives the onset of instability (a  > 0) a t  Rc,TS = 
5772, C L ~ , ~ ~  = 1.02. As even finite-amplitude two-dimensional disturbances to plane 
Poiseuille flow are stable for R < 3000 (Herbert 1976), we conclude that in the 
absence of cylinders no channel instabilities or unsteadiness would occur at the 
Reynolds numbers investigated in this study, 0 < R < 600. 

4.2. Eddy-promoter channel flows 

We begin by considering subcritical and supercritical flows in the ‘base’ geometry, 
L = 6.666, d = 0.4, b = 0.5. Although our numerical methods are clearly not limited 
to any particular range of the geometric parameters, our interest is primarily in 
‘small’ values of cylinder diameter d .  Small cylinders are not only of practical 
interest as regards minimizing QC, but are also of theoretical interest in that they 
allow the results to be interpreted in a perturbative sense. 

The spectral-element mesh used for the calculations is shown in figure 2. Fine 
resolution is placed near the cylinder surface in order to resolve the thin boundary 
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FIGURE 3. A plot of the steady streamlines in the base geometry a t  R = 125. The flow is essentially 
parallel with the exception of a small region corresponding to the wake of the eddy promoter. 

1 .a 

Y 

- 1 s  
0 1.257 0 1.0629 

U U 

FIGURE 4. Streamwise velocity profiles of the steady flow depicted in figure 3 at (a) x = 2.0 and ( b )  
x = 6.5 (see figure 2 for definition of streamwise (2) positions). Far from the cylinder the flow is 
quite close to the parabolic plane-channel result ; however, in the immediate vicinity of the cylinder 
the geometric disturbance has a significant effect, causing the formation of local inflexion 
points. 

layers and wake structures expected in the vicinity of the eddy promoter. In fig- 
ure 3, we plot the steady streamlines obtained by integrating the spectral-element 
discretization of ( 1 )  to a steady state at a Reynolds number of R = 125. In figures 
4 ( a )  and 4 ( b )  we plot streamwise velocity profiles a t  x = 2.0 and x: = 6.5, respectively, 
the latter showing the (almost) parabolic profile that obtains far from the eddy 
promoters, the former showing the inflexional wake profiles created immediately 
downstream of the cylinders. In  essence, the steady flow corresponds to a plane 
Poiseuille flow locally perturbed in the vicinity of the eddy promoters. 

For this base geometry the Reynolds number of R = 125 results in a stable steady 
flow, as evidenced by the fact that the time-iterative numerical procedure converges 
to a steady state. To investigate the linear stability of this flow, the steady-state 
shown in figure 3 is used as v, in (S)-( lo), and the linearized equations are integrated 
in time until a time-asymptotic purified least-stable mode is obtained. Interpreting 
this result as described by ( 1  1) we find that the growth rate and frequency of this 
mode are CT = -0.028 and 52 = 0.185, respectively. The unsteady streamlines of the 
associated eigenfunction are plotted in figure 5 a t  several times during the flow cycle, 
0 < t < 52-1. 
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FIGURE 6. A plot of the streamlines of the least-stable plane channel (d = 0) Tollmien-Schlichting 
wave for R = 125, a = 1.885. Note the similarity of this flat-channel mode with the eddy-promoter 
stability mode shown in figure 5. 

It is clear from figure 5 that the eddy-promoter eigenfunction is approximately a 
travelling wave, with two wavelengths per periodicity length L. This solution is 
therefore denoted a two-wave solution, or n = 2 solution, with a wavenumber of 
a = (2xn/L) = 1.885. Closer inspection of figure 5 reveals that the eigenfunction is 
not only a travelling wave, but in fact closely resembles the Tollmien-Schlichting 
stability waves of flat-channel (d = 0) plane Poiseuille flow. For comparison we plot 
in figure 6 the streamlines of the least-stable plane-channel Tollmien-Schlichting 
wave, v&, for a = 1.885, R = 125. 

To demonstrate this similarity more quantitatively we introduce the quantity 

where u' is the streamwise perturbation velocity. For an exact travelling wave, 
s (u ' ;  y, z) is precisely the modulus of the complex mode shape (e.g. s(u&,; y,x) = 
I&.(y)l), and will thus be independent of x ; for the approximate-travelling-wave 
eddy-promoter flows s(u' ; y, x) will no longer be independent of x, however the func- 
tional dependence will be weak except in the immediate neighbourhood of the cy- 
linder. In figure 7 we compare s (u ' ;  y, x = 6.5) for the eddy-promoter flow a t  R = 
125 with Id&,(y)I a t  R = 125, a = 1.885. Although in the vicinity of y = b - 1  = 

-0.5 the cylinder is seen to have a significant effect on the eddy-promoter flow, in 
the rest of the channel the eddy-promoter and plane-channel stability modes are 
quite similar. 

Particularly striking in figure 7 is the similarity of the critical-layer structure and 
position in the eddy-promoter and plane-channel stability modes. One would thus 
expect the two modes to have approximately the same phase speed, and hence 
frequency. This is, in fact, the case; the frequency of the flat-channel Toll- 
mien-Schlichting wave is Q,,(a = 1.885, R = 125) = 0.181, which is equal to the 
eddy-promoter frequency 0 = 0.185 to within 2.0%. Thus, in both form and 
frequency, the eddy-promoter stability modes for this particular geometry are very 
similar to their plane-Poiseuille-flow counterparts. The similarity between the eddy- 
promoter and flat-channel modes does not, however, extend to stability, as might be 
expected from the inflexional profile shown in figure 4 (a ) .  Indeed, the growth rate is 
(T = -0.028 for the eddy-promoter channel a t  R = 125 as compared to vTs(a = 1.885, 
R = 125) = -0.18 for the plane channel. 

For Reynolds numbers greater than R = R, x 150 the base-geometry eddy- 
promoter steady flow becomes unstable, bifurcating to a time-periodic flow of 
frequency Qn x 0. To investigate these supercritical states equations (1)-(7) are 
integrated to times sufficiently large that the effect of initial conditions has 
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FIGURE 7 .  A comparison of the mode shape of the base-geometry eddy-promoter stability mode 
with that of the associated Orr-Sommerfeld flat-channel stability mode at  R = 125. Except in the 
vicinity of the cylinder, the two mode shapes are quite similar, in particular as regards the location 
and structure of the critical layer. 

disappeared, and only the steady-periodic solution remains. We plot in figure 8 the 
unsteady streamlines of a nonlinear steady-periodic secondary flow a t  R = 225 at  
several times during the flow cycle, 0 < t < 52;'. This flow corresponds to  nonlinear 
saturation of (unstable versions) of the linear waves shown in figure 5, and resembles 
qualitatively the finite-amplitude Tollmien-Schlichting waves seen in plane channels 
a t  much higher Reynolds numbers (Orszag & Patera 1983). The bifurcation to 
unsteady flow can be shown to be a regular Hopf bifurcation (Karniadakis 
1987). 

Thus, in summary, the modes of eddy-promoter channel flow correspond to shear- 
layer destabilization of ' native ' Tollmien-Schlichting waves, with the frequency of 
the plane-channel waves only slightly modified, but with their stability drastically 
altered. The fact that the critical Reynolds number of a flow can be reduced from 

= 5772 (for plane channels) to R, = 150 (for eddy-promoter channels) without 
the form or frequency of the instability modes being substantially modified can be 
understood in terms of the relative magnitudes of the relevant quantities. In  
particular, if we assume that ed is some small parameter that measures the geometric 
and dynamic effect of the cylinder, we would expect that 

us = (1-y2)$ '+o(6d) ,  ir' = ir 'Ts+o(ed)j (23a, b )  

52 = 9TS+o(ed), (T = gTS+O(ed) ,  (23c, d )  

where all quantities on the left-hand side of (23) refer to the eddy-promoter flow. 
Now, as both the eigenfunction and frequency of the plane-channel Toll- 

mien-Schlichting waves are 'order one ' quantities a t  these Reynolds numbers, we 

13 FLM 192 
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I = O  

I I 

FIGURE 8. Streamlines of the supercritical eddy-promotor channel flow in the base geometry a t  
R = 225 plotted at several times during the flow cycle 0 < t < Ths steady-periodic flow 
corresponds to nonlinear saturation of unstable Tollmien-Schlichting-like travelling waves. 

expect from (23a-c) that these aspects of the plane-channel modes will persist in the 
presence of small cylinders for which E,, << 1. On the other hand, as the growth rates 
of Tollmien-Schlichting waves are viscously small, IgTSI << 1, it is plausible that even 
a small cylinder can have a significant effect on the stability of plane Poiseuille flow. 
More precisely, the inflexional profile in figure 4 ( a )  suggests a positive O(s,) term in 
(23d), which can in turn easily balance a small, negative gTS so as to produce a net 
positive growth rate. 

To demonstrate that the theory described in the preceding paragraphs is generally 
valid for small-cylinder eddy-promoter flows, we have calculated the linear stability 
characteristics of a relatively large number of different geometries a t  R = 125. This 
Reynolds number is subcritical for all of the geometries investigated. For each 
geometry the steady solution is calculated, and the time-asymptotic solution of the 
linearized Navier-Stokes equations is then used to infer the frequency Q, growth rate 
(T, and wavenumber a = 2 m / L  of the solution, where n denotes the number of waves 
per periodicity length. For example, figures 9(a), 9 ( b ) ,  and 9(c )  show the 
instantaneous streamlines of the stability calculations for L = 6.66, d = 0.25, b = 
0.5; L = 6.66, d = 0.25, b = 0.75; and L = 6.66, d = 0.25, b = 1.0, for which D = 
0.185, n = 2 ;  S2 = 0.357, n = 3; and D = 0.476, n = 4, respectively. 
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FIGURE 9. Instantaneous streamlines of the least-stable eddy-promoter-channel modes at R = 125 
for ( a )  L = 6.666, d = 0.25, b = 0.5; ( b )  L = 6.66, d = 0.25, b = 0.75; a.nd ( e )  L = 6.666, d = 0.25, 
b = 1.0. Cylinders near the wall excite low-wavenumber wall modes, whereas cylinders near the 
centre of the channel excite high-wavenumber centre modes. 

In figure 10 we plot SZ as a function of a for the different eddy-promoter geometries 
listed in table 1 .  All the eddy-promoter frequencies are seen to lie on the flat-channel 
Orr-Sommerfeld dispersion relation to within a few percent, not dissimilar to the 
result obtained previously for grooved-channel flows. Indeed, the stability theory 
described here is generally valid for a wide class of flows corresponding to finite but 
small geometric perturbations of classical homogeneous-geometry internal flows (e.g. 
channels and pipes). 

We shall now make several remarks concerning figure 10. First, the calculations 
are all performed with m = 1,  corresponding to the assumption of ‘strong’ 
periodicity. Numerical calculations with m = 2 for the base geometry ( L  = 6.66, d = 
0.4, 6 = 0.5) produce identical results to the corresponding calculations with m = 1 
for both linear and nonlinear flows, indicating that this particular flow is, indeed, 
stable with respect to subharmonic disturbances. As d and L become small we no 

13-2 
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0.7 - 

0.6 - 

0.5 - 

Q 0.4 - 

0.3 - 1 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

FIQURE 10. A plot of eddy-promoter frequency 8 (ai) as a function of wavenumber a at a Reynolds 
number of R = 125; the geometric parameters defining the different cases studied, i, are. 
summarized in table 1. The solid line indicates the corresponding flat-channel least-stable-mode 
Orr-Sommerfeld relation. With the exception of the L = 3.5, d = 0.4, b = 1.0 geometry (Al4), for 
which the effect of the cylinder is large due to the relatively small value of L,  the eddy-promoter 
and flat-channel flows have remarkably similar dispersion relations. 

a 

Geometry L 

1 4.50 
2 6.66 
3 6.66 
4 4.50 
5 6.66 
6 10.0 
7 3.50 
8 4.44 
9 6.66 

10 8.0 
11 10.0 
12 13.32 
13 6.66 
14 3.50 
15 4.50 
16 6.66 
17 10.0 
18 13.32 

d 6 

0.25 0.50 
0.25 0.50 
0.25 0.75 
0.25 1.0 
0.25 1.0 
0.25 1.0 
0.40 0.50 
0.40 0.50 
0.40 0.50 
0.40 0.50 
0.40 0.50 
0.40 0.50 
0.40 0.75 
0.40 1.0 
0.40 1.0 
0.40 1.0 
0.40 1.0 
0.40 1.0 

B 

0.129 
0.190 
0.357 
0.393 
0.476 
0.494 
0.180 
0.132 
0.185 
0.254 
0.182 
0.122 
0.357 
0.393 
0.340 
0.370 
0.405 
0.365 

n 

1 
2 
3 
2 
4 
6 
1 
1 
2 
3 
3 
3 
3 
2 
2 
3 
5 
6 

TABLE 1. The various geometries appearing in figure 10 (&) in terms of periodicity length L, 
cylinder diameter d ,  and cylinder placement b.  Also given is the frequency of the least-stable mode, 
and the number of waves per periodicity length, n (a = 2nn/L). Note t h a t  all calculations are 
performed for m = 1 ; however, only for certain geometries (e.g. the base geometry with L = 6.666, 
d = 0.4, b = 0.5) has the validity of this assumption been verified. 
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longer expect m = 1 to be a reasonable assumption; for instance, for L = 4.44, d = 
0.4, b = 0.5 we find that with m = 2 we obtain an n = 3 solution, whereas with m = 
1 we obtain an n = 1 solution. In these cases the larger computational domain must 
be used. 

Second, we note that at this Reynolds number the least-stable mode of the 
Orr-Sommerfeld operator changes from a wall mode to a centre mode a t  a x 2.50, as 
reflected in the discontinuity in the dispersion relation in figure 10. Although our 
theory only predicts that SZ = SZ,,(a, R), and does not predict the spatial scale a that 
will be selected by the flow, it appears generally true that cylinders near the wall 
generate low wavenumbers associated with wall modes (see figure 9 a ) ,  whereas 
cylinders near the centre of the channel generate high wavenumbers associated with 
centre modes (see figure 9b,  c ) .  This selection rule is consistent with the fact that the 
location of the critical layer of the excited Orr-Sommerfeld mode should be 
correlated with the position of the cylinder and associated inflexion points. It is thus 
clear that although the cylinders do not play a role in the dispersion relation, they 
do play a role in frequency selection. 

Lastly, it is important to consider what role, if any, the mechanism of unbounded- 
flow isolated-cylinder vortex shedding plays in the frequency determination process 
in eddy-promoter channels. For the cases in which the cylinder is close to the wall 
and low-wavenumber modes are selected, it is clear that the instability-mode spatial 
structures (see figures 5-7 and 9a)  are unambiguously inconsistent with the von 
Kdrmin vortex street (Gerard 1978). However, for eddy-promoter flows in which the 
cylinder is placed near the centre of the channel, as in figure 9(c) ,  the wavenumber 
and frequency of the stability modes are no longer inconsistent with those of the 
infinite-domain cylinder wake. Nevertheless, the dominant stability structures even 
in this case still derive from the vortical background plane Poiseuille flow. 

This is demonstrated in figure 1 1  by a comparison of mode shape s(u’ ; y, 2) for the 
eddy-promoter stability mode (R = 150, L = 6.666, d = 0.4, b = 1) and the least- 
stable Orr-Sommerfeld mode a t  the same Reynolds number and wavenumber (a = 
2.83). As for the near-wall modes (see figures 5-7), the eddy-promoter-channel 
structures are quite similar to their plane-channel-flow counterparts. The deter- 
mining factor in deciding whether a Tollmien-Schlichting mechanism or a vortex- 
street mechanism will be operative in a particular flow is the background vorticity 
field in which the instability evolves ; for a blunt irrotational incoming flow field (i.e. 
as in a non-fully developed laminar flow or a mean turbulent flow) the von Karmin 
vortex street will result, whereas for a parabolic background flow a Tollmien- 
Schlichting wave will be selected (a. E. Karniadakis, H. Kozlu & A. T. Patera, 
research in progress). This separation of mechanism has not been completely 
appreciated in the past (e.g. Shina, Takizuka & Okamoto 1977). 

There are many important aspects of eddy-promoter stability theory related to 
inviscid-viscous analysis, single-cylinder non-periodic flow, supercritical behaviour, 
and three-dimensional secondary instability that we shall not consider here. In 
particular, it  is important to determine if the viscous mean flows induced by eddy 
promoters (e.g. figure 3 )  are inviscidly unstable, or whether they still require the 
Tollmien-Schlichting viscous mechanism to achieve positive growth rates. Although 
these issues are of interest in their own right, they are not directly related to the 
transport enhancement-stability theory which is the central focus of the current 
paper. We thus relegate these topics to other publications (Karniadakis & Amon 
1987; Amon & Patera 1988; G. E. Karniadakis, H. Kozlu & A. T. Patera, research in 
progress), and proceed directly to the consideration of dissipation- transport in 
supercritical eddy-promoter flows. 
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Eddy promoters 

- 1.0 1 .o 
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FIGURE 11. A comparison of the mode shape of the L = 6.666, d = 0.4, b = 1.0 (centred cylinder) 
eddy-promoter stability mode with that of the associated Orr-Sommerfeld flat-channel centre 
mode. As for the wall modes in figure 7 ,  the agreement between the eddy-promoter and flat-channel 
centre-mode shapes is very good. Xote the distinct wall and critical layers. 

5. Dissipation transport in eddy-promoter flows 
The Reynolds-analogy dissipation- transport theory presented in 3 3 suggests that 

if an eddy-promoter flow I can be created that is significantly more unstable than 
some other eddy-promoter (or flat-channel) flow 11, then flow I will incur significantly 
less dissipation for a given heat transfer rate than flow I1 if the direct dissipation due 
to the cylindrical eddy promoter, Qc, can be maintained small. The stability theory 
presented in $ 4  indicates that  small cylinders can drastically reduce the stability of 
channel flow, implying that destabilization and control of Qc are not physically 
inconsistent objectives. We now show that, indeed, very low-dissipation transport 
systems can be achieved using low-Reynolds-number supercritical eddy-promoter 
flows. 

We begin by plotting in figure 12 the Nusselt number N u  as a function of Reynolds 
number R for the base geometry L = 6.666, d = 0.4, b = 0.5 (all results are for Pr = 
1.0). For Reynolds numbers less than R, = 150 the Nusselt number is in fact slightly 
less than that for plane-channel laminar flow, Nu,  = 1.35. This is because the 
conduction penalty associated with the adiabatic cylinder outweighs the convective 
effect of the extremely weak, essentially parallel wake flow (see figure 3). However, 
for R > R, the Nusselt number increases dramatically owing to the Reynolds flux 
generated by the unsteady motion. Figure 12 serves as confirmation of our 
hypothesis that  an unstable flow will lead to larger Nusselt numbers a t  lower 
Reynolds numbers. 
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FIGURE 13. A plot of the isotherms of the steady subcritical flow for the base geometry at R = 125 (see 
figure 3 for the corresponding streamlines). The temperature is represented by the colour spectrum, with 
red (blue) corresponding to hot (cold). The temperature distribution differs only slightly from that for fully 
developed parallel flow in a flat channel. 

FIGURE 14. A plot of the unsteady isotherms at one instant in time of the steady-periodic supercritical flow 
for the base geometry at R = 300. Transport enhancement is effected by Tollmien-Schlichting-induced 
convective mixing. The similarity of the isotherms depicted here with those for grooved-channel flow 
(figure 18 of Ghaddar et al. 1986~) is indicative of the ubiquitous nature of Tollmien-Schlichting waves 
in internal flows. 

KARNIADAKIS, MIKK & PATERA (Facing p.  385) 
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To graphically illustrate the physical mechanism responsible for the increase in 
Nusselt number shown in figure 12, we plot in figure 13 (Plate 1) the steady isotherms 
at R = 125, and in figure 14 (Plate 1) the unsteady isotherms associated with a 
supercritical steady-periodic flow at  R = 300. As for the case of resonantly forced 
subcritical grooved-channel flows (Ghaddar et al. 1986c), heat transport enhancement 
in supercritical eddy-promoter flows is due to strongly non-parallel finite-amplitude 
Tollmien-Schlichting waves which act as effective heat exchangers between the 
heated wall and the bulk fluid. 

Figure 14 also demonstrates two critical facts germane to the validity of the 
Reynolds analogy. First, the strong wavy nature of the flow indicates that the heat 
transfer is effected via Reynolds’ fluxes and convective-diffusive balance rather than 
through (mean) molecular gradient diffusion. This is illustrated more quantitatively 
in figure 15 as a plot of the Reynolds flux, 

+l lQ ,  

P(yy;x)  = R Pr(v’0’) = R PrQ, 1 [v’(x, t’) B’(x, t’)] dt‘, (24) 

at x = 6.5 and R = 450. Here v‘ and 0 are the fluctuating components of vertical 
velocity and temperature, v’ = v- (v) and 0 = 8- ( O ) ,  respectively. The fact that 
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FIQTJRE 15. A plot of the Reynolds flux R Pr(v'6') a t  x = 6.5 and R = 450 in the base geometry 
L = 6.66, d = 0.40, b = 0.5. The order-unity Reynolds flux demonstrates the importance of 
convective transport in supercritical eddy-promoter flows. 

B is order unity demonstrates that the majority of the heat in the interior is 
transferred via fluctuations rather than through molecular diffusion through the 
mean gradient. 

Second, it can be seen in figure 14 that the structure responsible for heat transfer 
is the spatially homogeneous Tollmien-Schlichting wave, not the local boundary- 
layer effects in the vicinity of the cylinder. We demonstrate this feature more 
quantitatively by plotting in figure 16 (O(x, y = - 1))-l (a local Nusselt number) 
along the bottom wall, 0 < x < L,  for R = 225 and the base geometry. The most 
significant increase in the space-averaged Nusselt number is clearly due to the overall 
shift of level compared to the subcritical flow, not due to the local flow deflection 
caused by the cylinder. 

Given the convective-diffusive balance and wall structure ' universality ' demon- 
strated in figures 14-16 we expect the Reynolds analogy to be valid in supercritical 
eddy-promoter flows. We verify this by plotting in figure 17 the Reynolds-analogy 
constant y as a function of Reynolds number R. (Note y is calculated from (19) based 
on the numerical data for the total dissipation @, the Nusselt number Nu, and the 
cylinder drag.) As expected, once the Reynolds number is slightly greater than R,, 
y rapidly approaches unity. It is clear from figure 17 that the Reynolds analogy is 
equally valid for laminar and turbulent flows as long as sufficient mixing takes place 
(measured, for instance, by (Nu-Nu,)/Nu,). 

The last piece of the dissipation-transport equation is the non-analogous loss 
arising from direct dissipation due to the eddy promoters. In particular, if the non- 
analogous losses are not to dominate the analogous components of momentum 
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FIGURE 17. A plot of the Reynolds-analogy constant y as a function of Reynolds number. For 
R > R, the analogy constant approaches unity, reflecting the presence of a strongly con- 
vective-diffusive transport mechanism. 
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transport in (19a), we must have that @& = 3@,/R2Nu is order unity or less, where 
from -( 19 b) 

The geometric terms in brackets in (25) will be O ( d / L )  4 1, and thus if C ,  and RINu 
are not too large, the entire quantity will be small. Our numerical results-indicate 
that C, is quite close to its (pre-drag-crisis) large-R asymptotic value for unbounded 
flow past an isolated cylinder, C, = 1.30 (Tritton 1959; Karniadakis 1988). As for 
our flows R/Nu is on the order of 100, it  follows that @A is order unity. This is shown 
to be the case in figure 18, which is a plot of @A as a function of Reynolds number. 
Note the non-analogous dissipation grows for larger R because the Nusselt number 
grows slower than linearly with Reynolds number. 

We conclude that eddy-promoter flows achieve significant heat transfer a t  low 
Reynolds number, and do so while roughly preserving the Reynolds analogy (y  - 1,  
@& not large). This directly implies reduction in dissipation from the theory of 53.3; 
we demonstrate this result in figure 19 as a plot of dissipation @ as a function of 
Nusselt number Nu. In  addition to the base-geometry eddy-promoter data we have 
also plotted results for transitional and low-Reynolds-number turbulent flat-channel 
(d = 0) flows (H. Kozlu, research in progress), from which it is seen that the eddy- 
promoter flows can save up to 500% in dissipation in the Nusselt-number range 
plotted. The qualitative features of the dissipation- transport relation shown in fig- 
ure 19 appear to be generally valid, even in more complicated configurations than 
the periodic eddy-promoter geometry studied here. 

At larger Reynolds numbers the dissipation reduction in eddy-promoter flows 
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FIGURE 19. A plot of dissipation as a function of Nusselt number for the base-geometry eddy- 
promoter flow : 0,  numerical ; A, experimental (Kozlu et al. 1988). Also shown is the solution for 
laminar flat-channel (d = 0) flow (solid line), and data for transitional and low-Reynolds-number 
turbulent flat-channel (d = 0) flow (0) (H. Kozlu, research in progress). Flow destabilization 
results in significant savings in dissipation. 

Nu 

decreases owing to growth of CD; through increases in R/Nu.  This trend continues in 
the turbulent flow regime, although there is an interesting exception a t  transition 
(R % 800) due to a premature drag crisis on the cylinder (Kozlu et al. 1988). The 
decrease in dissipation reduction at  higher laminar and turbulent Reynolds numbers 
is due to nonlinear saturation, that is, the scales of motion destabilized by the eddy 
promoters are increasingly naturally unstable (e.g. the turbulent energy cascade). As 
a result, the cddy-promoters yield little increase in heat transfer, yet continue to 
contribute to dissipation via non-analogous cylinder drag. 

This result suggests that as the Reynolds number and Nusselt number increase, 
destabilization should be applied a t  the naturally stable scales of motion (such as the 
viscous sublayer in turbulent flow (Kozlu et al. 1988)) if significant reduction in 
dissipation is to be realized. Study of transport enhancement by scale-matched flow 
destabilization is the natural extension of the present investigation, and is currently 
underway. 

We would like to  thank Professor Ain A. Sonin for helpful discussions. We would 
also like to acknowledge Mr Hamdi Kozlu for his contributions to this paper, and for 
making his experimental data available prior to publication. This work was 
supported by the National Science Foundation under Grant CBT 85-06146, and by 
the Office of Naval Research and the Defense Sdvanced Research Projects Agency 
under Contract N00014-85-K-0208. Some of the calcuIations were performed on the 
NASA-Ames CRAY X-MP. 



G .  E. Karniadakis, B. B. Mikic and A .  T. Patera 

R E F E R E N C E S  

AMON, C. H. & PATERA, A. T. 1988 Numerical calculation of stable three-dimensional tertiary 

BERGLES, A. E. & WEBB, R. L. 1985 A guide to the literature on convective heat transfer 

DRAZIN, P.  G. & REID, W. H. 1981 Hydrodynamic Stability. Cambridge University Press. 
GERARD, J. H. 1978 The wakes of cylindrical bluff bodies at  low Reynolds number. Proc. R. SOC. 

Lond. A 289, 351. 
GHADDAR, N. K., KARNIADAKIS, G. E. & PATERA, A. T. 1986a A conservative isoparametric 

spectral element method for forced convection ; application to fully developed flow in periodic 
geometries. Numer. Heat Transfer 9, 277. 

GHADDAR, N. K., KORCZAK, K. Z., MIKIC, B. B. & PATERA, A. T. 19863 Numerical investigation 
of incompressible flow in grooved channels. Part 1.  Stability and self-sustained oscillations. 
J .  Fluid Mech. 163, 99. 

GHADDAR, IT. K., MAGEN, M., MIKIC, B. B. & PATERA, A. T. 1986c Numerical investigation of 
incompressible flow in grooved channels. Part 2. Resonance and oscillatory heat transfer 
enhancement. J .  Fluid Mech. 168, 541. 

GIRAULT, V. & RAVIART, P. A. 1986 Finite Element Approximation of the Navier-Stokes Equations. 
Springer. 

GOTTLIEB, D. & ORSZAG, S. A. 1977 Numerical Analysis of Spectral Methods. SIAM. 
HERBERT, T. 1976 Periodic secondary motions in a plane channel. In Proc. 5th Intl Conf. on 

Numerical Methods in Fluid Dynamics (ed. A. I .  van de Vooren & P. J. Zandbergen), Lecture 
notes in Physics, vol. 59, p. 235. Springer. 

ISAACSON, M. S. & SONIN, A. A. 1976 Sherwood number and friction factor correlations for 
electrodialysis systems, with application to process optimization. I & EC Process Des. Dev. 15, 
313. 

KARNIADAKIS, G .  E. 1987 The spectral element method applied to heat transport enhancement 
by flow destabilization. Ph.D. thesis, M.I.T. 

KARNIADAKIS, G. E. 1988 Numerical simulation of heat transfer from a cylinder in crossflow. Intl 
J .  Heat Mass Transfer (to appear). 

KARNIADAKIS, G. E. & ANION, C. H. 1987 Stability calculations of wall bounded flows in complex 
geometries. In Proc. Sixth I M A C S  Intl  Symp.  on Comp. Meth. for Partial Differential Equations, 

states in grooved-channel flow. Phys. Fluids (submitted). 

augmentation. Advances in Enhanced Heat Transfer, 23rd Nut1 Heat Transfer Conf. Denver. 

p. 525. 
KAYS, W. M. & CRAWFORD, M. E. 1980 Convective Heat and Mass Transfer. McGraw-Hill. 
KORCZAK, K. Z. & PATERA, A. T. 1986 An isoparametric spectral element method for solution of 

the Navier-Stokes equations in complex geometry. J .  Comp. Phys. 62, 361. 
KOZLU, H. 1988 Experimental investigation of heat removal from a surface, PhD thesis, MIT (in 

progress). 
KOZLU, H., MIKIC, B. B. & PATERA, A. T. 1988 Minimum-dissipation heat removal by scale- 

matched flow destabilization. Intl  J .  Heat Mass Transfer (to appear). 
MADAY, Y. & PATERA, A. T. 1988 Spectral element methods for the incompressible Navier-Stokes 

equations. In State of the Art Surveys in Computational Mechanics (ed. A. K. Noor), ASME (to 
appear). 

MAGEN, M., MIKIC, B. B. & PATERA, A. T. 1988 Bounds for conduction and forced convection heat 
transfer. Intl J .  Heat Mass Transfer (to appear). 

MIKIC, B. B. 1981 A model for turbulent transport near a wall. In  Proc. Congr. for Theoretical and 
Applied Mechanics, Kupari, Yugoslavia, p. 119. 

ORSZAG, S. A. 1971 Accurate solution of the Orr-Sommerfeld stability equation. J .  Fluid Mech. 
50, 689. 

ORSZAG, S. A. & PATERA, A. T. 1983 Secondary instability of wall-bounded shear flows. J .  Fluid 
Mech. 128, 347. 

PATANKAR, S. V.,  LIU, C. H. & SPARROW, E. M. 1977 Fully developed flow and heat transfer in 
ducts having streamwise-periodic variations of cross-sectional area. J .  Heat Transfer 99, 
180. 



Minimum-dissipation transport enhancement 39 1 

PATERA, A. T. 1984 A spectral element method for fluid dynamics: laminar flow in a channel 

REYNOLDS, 0. 1874 On the extent and action of the heating surface for steam boilers. Proc. 

RQNQuIST, E. M. & PATERA, A. T. 1987 A Legendre spectral element method for the Stefan 

SCHLICHTINQ, H. 1968 Boundary Layer Theory, 6th edn. McGraw-Hill. 
SHINA, Y., TAKIZUKA, T. & OKAMOTO, Y. 1977 Flow visualization around turbulence promoters in 

parallel, convergent and divergent channels. In Proc. Intl Syrnp. on Flow Visualization, Tokyo, 
Japan, p. 149. 

TAYLOR, G. I .  1930 The application of Osborne Reynolds’s theory of heat transfer to flow through 
a pipe. Proc. R. SOC. A, CXXZX, 25. 

THOMAS, L. C. 1979 Turbulent burst phenomenon. In Turbulent Forced Convection in Channels and 
Bundles, vol. 1 ,  p. 491. Hemisphere. 

TRITTON, D. J. 1959 Experiments on the flow past a circular cylinder at  low Reynolds numbers. 
J .  Fluid Mech. 6, 547. 

expansion. J .  Comp. Phys. 54, 468. 

Manchester Lit. Phil. SOC. 14, 7.  

problem. Intl J .  Num.  Meth. Engng 24, 2273. 


